CHAPTER ELEVEN

GLOBAL MATHEMATICS

- The figure shows an arc with angle θ at its centre.
- The length of an arc with angle θ at its centre = $\frac{\theta}{360} \times 2\pi r$, where r = the radius.

(Q1) Find the length of an arc which has an angle of 60⁰ at the centre, and a radius of 10cm.

Let the length of the arc = L, and θ = 60⁰.

Since
$$L = \frac{\theta}{360} \times 2\pi r \Rightarrow L = \frac{60}{360} \times 2 \times 3.14 \times 10 = 1.04$$
cm.

(Q2)An arc AB subtends an angle of 60° at the centre of a circle of radius 14cm.

Find (i) the length of the arc AB.

ii) the length of the chord AB. (Take π = 3.142 or $\frac{22}{7}$).

Soln:

Length of arc AB = $\frac{\theta}{360} \times 2\pi r = \frac{60}{360} \times 2 \times 3.14 \times 14 = 15$ cm.

(II)

Considering Fig.(1), Sin $30^0 = \frac{AM}{14}$

=> AM = 14 x sin 30[°], => AM = 14 x 0.5 = 7cm.

But AB = 2AM = 2(7) = 14cm.

Length of chord AB = AB = 14cm.

(Q3) An arc AB is of length 28.5cm, and the diameter of the circle is 42cm. Find θ the angle subtended at the centre of the circle.

Soln:

Length of arc = 28.5cm. Since diameter = 42cm => radius = 21cm.

Since length of arc AB = $\frac{\theta}{360} \times 2\pi r$,

=>28.5 =
$$\frac{\theta}{360}$$
 x 2 x $\frac{22}{7}$ x 21
=>28.5 = $\frac{132\theta}{360}$

=>132θ = 28.5 x 360,

=>132 θ = 10260, => θ = $\frac{10260}{132}$, => θ = 78⁰

The Earth:

<u>.</u>

N/B:

••

•

- Longitude 180[°]W always meets longitude 180[°]E.

- When two longitudes have a similar direction, i.e either East or West, then their difference is used in calculation.

- For example longitude 10⁰E and longitude 25⁰E have a similar direction, which is East.

- Therefore their difference i.e $25 - 10 = 15^0$ must be used in calculation.

- When the two longitudes differ in direction, then their sum is used.

- For example, considering longitude 25^{0} W and longitude 15^{0} E, their sum i.e. 15 + 25 = 40^{0} , must be used in calculation.

Small and great circles:

- A small circle is obtained when the line of longitude or the line of latitude does not through the centre of the earth.

- A great circle is obtained when the line of latitude or the line of longitude passes though the centre of the earth.

- All longitudes are great circles, since they all pass through the centre of the earth.

- The equator is the only latitude which passes through the centre of the earth.

- For this reason, it is the only latitude which is a great circle.

- It must be noted that every longitude passes through the north pole and the south pole.

